

DOT-TSC-FRA-82-1

Summary of the Department of Transportation Rail-Highway Crossing Accident Prediction Formulas and Resource Allocation Model

R. Coulombre J. Poage

E. Farr

J. Hitz

Transportation Systems Center Cambridge MA 02142

September 1982 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation Federal Railroad Administration

Office of Safety Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No. DOT-TSC-FRA-82-1	2. Government Acce	ssion No.	3. Recipient's Catalog-	No
4. Title and Subtitle	£		i. Report Date	
SUMMARY OF THE DEPARTMENT	OF TRANSPORTAT	ION RAIL-	September 198	32
HIGHWAY CROSSING ACCIDENT	PREDICTION FOR	MULAS AND	5. Performing Organizat	non Code
RESOURCE ALLOCATION MODEL		-	DIS-732	
7. Author's)			 Performing Organizat 	ion Keport No.
R. Coulombre, J. Poage, E.	Farr, J. Hitz		DOT-TSC-FRA-8	2-1
9. Performing Organization Name and Addre	\$3		0. Work Unit No. (TRA	15)
U.S. Department of Transpo Research and Second Prese	rtation		HW221/RR233//	R2207/R2303
Transportation Systems Cen	ams Administra ter		1. Contract or Grant N	0.
Cambridge, MA 02142		F.	3. Type of Report and	Pariad Covered
12. Sponsoring Agency Name and Address				Feriod Covered
U.S. Department	of Transportation	1	Final Report	1001
Federal Railroad Administration	Federal Highway Ad	Iministration	UCE. 1980 - 0	ct. 1981
Washingto	n DC 20590	·. []	 Sponsoring Agency (Code
15. Supplementary Notes		<u>`</u>	~	
				-
<u>\</u>		<u></u>		. <u></u>
The Highway Safety Act Assistance Act of 1978, pro- improve safety at public ra- motorist warning devices, s is an important part of cro Transportation (DOT) assist allocations of Federal fund This report describes the r the allocation of funds amo benefits for a given level The procedure consists formula which computes the on information from the U.S the Railroad Accident/Incid resource allocation model d tion on a cost-effective ba	s of 1973 and ovide funding a ail-highway cro such as flashin ossing safety : is states and n is for rail-hig resource alloca ong crossings t of funding. a of two parts. expected numbe . DOT-AAR Nati ent Reporting esigned to nom	1976, and the S authorizations to ossings. The in- ing lights or flat improvements. The sailroads in deter shway crossing sa ation procedure of o achieve maximum The first is a r of accidents a onal Rail-Highwa System (RAIRS). Sinate crossings gest the type of	urface Transpo- b individual st stallation of a shing lights with the U.S. Department afety improvement developed to as im crossing saf an accident pre- at each crossing ty Crossing Inv The second p for improvement warning device	rtation tates to active ith gates, ment of tive ents. ssist in fety ediction ng, based ventory and part is a of considera- ce to be
installed.			4	
^L Association of American Ra	ilroads (AAR)			
17. Key Words		18. Distribution Stateme		
Rail-Highway Crossing				
Grade Crossing		DOCUMENT IS A THROUGH THE	NAILABLE TO THE PONATIONAL TECHNICA	
Railroad Safety		INFORMATION	SERVICE, SPRINGFIEL	_D,
Cost-Benefit				1
19. Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No, of Pages	22. Price
UNCLASSIFIED	UNCLASSIF	TED	28	ĺ
				<u> </u>

· ·

PREFACE

The Department of Transportation's (DCT) rail-highway crossing accident prediction formula and resource allocation model were developed at the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration's (FRA) Office of Safety and the Federal Highway Administration's (FHWA) Office of Research. When used together, these procedures provide a systematic means of assisting in making a preliminary, optimum allocation of funds among individual crossings, considering available improvement options. These procedures provide a ranked listing of crossings which can then be used as a guide for selecting crossings for on-site visits by diagnostic teams. States and railroads are invited to contact the FRA, FHWA, or the authors of this report for assistance in using the resource allocation procedures.

This report provides an overview of the use and output of these procedures. Dr. Peter H. Mengert/TSC had the primary role in developing the DOT rail-highway accident prediction formula, and Dr. Edwin H. Farr/TSC had the major role in formulating the resource allocation model.

iii

Preceding page blank

Symbol Mon. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo
$\frac{1}{1} = \frac{1}{1} = \frac{1}$
Image: Section of the section of t
Continued of the second
Image: Section of the section of t
1 1
1 1
1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1
Image: Second
1 1 1
1 1
1 1 1 1 1 1
1 1
1 1
1 1
1 1
a b b b a b b b b b b b b b b b b b b b b b b b b b b b c b b c b
1 1
a a a a a a a a a b a a a a a a a a a
1) 11
5
Colours
s
ے ابار ابار

METRIC CONVERSION FACTORS

iv

CONTENTS

Section	· · ·	Page
1.	INTRODUCTION	1
2.	DOT ACCIDENT PREDICTION FORMULA	1
3.	RESOURCE ALLOCATION MODEL	6
APPENDIX	A - ACCIDENT PREDICTION TABLE - DOT ACCIDENT PREDICTION FORMULA	11
APPENDIX	B - EQUATIONS FOR ACCIDENT PREDICTION FACTORS - BASIC FORMULA	13
APPÉNDIX	C - TABLE VALUES FOR ACCIDENT PREDICTION FACTORS - BASIC FORMULA	15
GLCSSARY		19
BIBLIOGRA	АРНҮ	21

LIST OF SYMBOLS

A = final predicted number of accidents per year
a = initial predicted number of accidents per year
c = number of highway vehicles per day
d = number of through trains per day during daylight
DT = factor for number of through trains per day during daylight
EI = exposure index factor based on the product of the number of highway vehicles and trains per day
hl = number of highway lanes
HL = factor for number of highway lanes
hp = highway paved?, yes = 1.0, no = 2.0
HP = factor for highway paved
ht = highway type value
HT = factor for highway type*
K = basic accident prediction formula constant*
ms = maximum timetable speed (mph)
MS = factor for maximum timetable speed*
mt = number of main tracks
MT = factor for number of main tracks
N = number of historical accidents recorded for a crossing
t = number of trains per day
T = number years of recorded accident data
T = weighting factor in DOT accident prediction formula

* New formula factors not included in the previous version of the basic formula described by Peter Mengert in <u>Rail-Highway Crossing Hazard Prediction</u> <u>Research Results</u>.

vi

1. INTRODUCTION

The Highway Safety Acts of 1973 and 1976 and the Surface Transportation Assistance Act of 1978 provide funding authorizations for individual States to improve safety at public rail-highway crossings. The installation of active motorist warning devices, such as flashing lights or flashing lights with gates, is an important part of crossing safety improvements. In support of these safety efforts, several projects have been undertaken by the U.S. Department of Transportation (DOT) to assist States and railroads in determining effective allocations of funds for rail-highway crossing safety improvement. One project is the development of a resource allocation procedure which assists in nominating and ranking crossings for safety improvements to assure maximum safety benefits for a given level of funding. DOT's resource allocation procedure is based on two analytical tools, an accident prediction formula and a resource allocation model. The purpose of this paper is to describe these tools and to explain the applications for the resource allocation procedure.

A joint U.S. DOT-AAR National Rail-Highway Crossing Inventory, (DOT Crossing Inventory) was completed in 1976.¹ The DOT Crossing Inventory contains characteristics of all rail-highway crossings in the United States, gives uniform information on each crossing, and provides an improved basis for rail-highway crossing accident prediction.

A number of crossing hazard formulas have been developed and used extensively in dealing with solutions to the rail-highway crossing safety problem. The DOT accident prediction formula is an improvement over other hazard formulas.

^{&#}x27; Association of American Railroads (AAR)

The DOT accident prediction formula, illustrated in Figure 1, can be used to predict the annual average number of accidents at crossings.

¹ Federal Highway Administration, <u>Railroad-Highway Grade Crossing Handbook</u>, (Washington, D.C.: U.S. Department of Transportation, August 1978).

The initial prediction of crossing accidents (a) is determined from the basic formula described in equation 1. The basic formula was developed by applying nonlinear, multiple regression techniques to crossing characteristics stored in the DOT Crossing Inventory and to accident data contained in RAIRS. Using the basic formula, a crossing's predicted number of accidents per year is calculated by multiplying a series of factors, each factor representing a characteristic of the crossing described in the DOT Crossing Inventory. The numerical value of each factor is related to the statistical influence which the specific crossing characteristic has on the predicted number of accidents.

The general expression of the basic formula is shown below:

 $a = K \times EI \times MT \times DT \times HP \times MS \times HT \times HL$ (equation 1)

Three sets of equations are used to determine the values of each factor, corresponding to the following categories of warning devices: passive warning devices, flashing lights, and flashing lights with automatic gates. Specific equations for the crossing characteristic factors by the three warning device categories are shown in Appendix B. Each set of factor equations should only be used for crossings with the warning device category for which it was designed. To predict the number of accidents at a crossing with crossbucks for example, the passive set of equations should be used. Numerical values of the factors for different crossing characteristics are tabulated in Appendix C.

The predictive capacity of the basic formula is limited because certain important crossing characteristics, such as site distance at the crossing, are not included in the DOT Crossing Inventory. Inclusion of actual accident history at crossings dramatically improves the predictive capabilities of the formula. The improved DOT accident prediction formula is based on a weighted average of two separately derived predictions. The two separate predictions are obtained from: the "basic formula" (equation 1) which provides a prediction of accidents (a) on the basis of a crossing's characteristics, as described in the DOT Crossing Inventory; and the actual accident history at a crossing equal to the number of previous accidents (N) divided by the number

of years of data (T). These two predictions are combined in the DOT accident prediction formula as follows:

$$A = \frac{1}{T_0 + T} (a) + \frac{T}{T_0 + T} \frac{N}{T} (equation 2)$$

where: $T_0 =$ formula weighting factor = 1.0 / (0.05 + a).

Values for the final accident prediction (A), obtained from the DOT accident prediction formula (equation 2), are tabulated in Appendix A for different values of the initial predictions (a) from equation 1 and the number of accidents (N) for five years of accident history data. The most recent five years of accident history data should be used to ensure good performance from the formula. Accident history information older than five years may be misleading because of changes in crossing characteristics. Referring to the table in Appendix A, the value of A is determined from the intersection of the appropriate column and row for the values of a and N. For example, if a = 0.10 and N = 1 for five years of data, the predicted number of accidents is A = 0.143.

Use of the DOT accident prediction formula is illustrated in this section. Characteristics of a sample crossing from the DOT Crossing Inventory and RAIRS are shown in Table 1.

CHARACTERISTIC	VALUE
Present warning device	Crossbucks
Annual average daily highway traffic	500
Total number of trains per day	13
Number of main tracks	2
Number of thru trains per day during daylight	6
Highway paved?	Yes
Maximum timetable speed (mph)	40
Highway type	rural minor arterial (inventory code 06)
Number of highway lanes	2
Number of years accident data	5
Number of accidents in T years	2

TABLE 1. CHARACTERISTICS OF SAMPLE CROSSING

The basic formula (equation 1) is first used to determine the initial accident prediction (a). The values of the formula factors for a passive crossing are determined from Table C-1: K = 0.002268; EI = 32.73; MT = 1.52; DT = 1.58; HP = 1.00; MS = 1.36; HT = 0.82; and HL = 1.00. Substituting the factor values in the basic formula yields:

a = K x EI x MT x DT x HP x MS x HT x HL = 0.002268 x 32.73 x 1.52 x 1.58 x 1.00 x 1.36 x 0.82 x 1.00 = 0.20 accidents per year.

The final accident prediction (A) in accidents per year is determined by combining the initial prediction (a) with the crossing's accident history, using either the DOT accident prediction formula (equation 1) or the table in Appendix A for five years of accident data. With an initial accident prediction (a = 0.20) and an accident history of two accidents during the past five years, the final accident prediction (A) is 0.31 accidents per year.

The accident prediction formula was compared with other rail-highway crossing accident prediction models. Statistical tests which compared these models indicated that the accuracy of DOT's formula is superior for ranking crossings by predicted accident levels.¹ Since the DOT formula is based on the DOT Crossing Inventory, a common data base of crossing characteristics is available to formula users. As the DOT Crossing Inventory is updated and the RAIRS data is expanded, the DOT accident prediction formula will reflect the latest information.

3. RESOURCE ALLOCATION MODEL

The resource allocation model, shown as part of the resource allocation procedure in Figure 2, is designed to nominate crossings for improvement and suggest installation of the type of warning device which is cost effective and most safe. Input to the resource allocation model includes the number of accidents predicted for each crossing, the cost and effectiveness of different safety improvement options, and the budget level available for crossing safety improvement. Accident predictions can be made for a crossing by using any accident prediction formula which computes the expected number of accidents per year.

¹ Peter Mengert, <u>Rail-Highway Crossing Hazard Prediction Research Results</u>, (Washington, D.C.: U.S. Department of Transportation, March 1980).

N.B.: The performance of the DOT formula described in this report is an improved version of the one described in Dr. Mengert's report.

б

The resource allocation model requires improvement costs for flashing lights at a passive crossing, flashing lights and gates at a passive crossing, and gates at a crossing equipped with flashing lights. The required cost data may be specified by the user of the model, or data from a recent DOT study shown in Table 2 may be used.¹ The cost data may be total life-cycle costs: the sum of procurement, installation, and maintenance; or those associated with a particular component of life-cycle costs. Similarly, the effectiveness of these warning device improvement options must be specified by the decimal fraction by which accidents are reduced with the installation of the warning device. Values for warning device effectiveness, determined from another DOT study, are listed in Table 2.²

The resource allocation model is used initially to develop a ranked list of benefit/cost ratios, representing improvement project decisions for each of the crossings and options under consideration. For a crossing with multiple tracks, the model shows gates as the only improvement option. The benefit is the number of predicted accidents prevented per year, and the cost

IMF	ROVEMENT ACTION	EFFECTIVENESS	LIFE CYCLE COST	
	. · · · ·			
Pas Lig	sive to Flashing hts	0.65	\$58,100	
Pas Lig	sive to Flashing hts with Gates	0.84	\$88,500	
Fla Fla	shing Lights to shing Lights with G	0.64 ates	\$83,300	

TABLE 2. COST AND EFFECTIVENESS PARAMETERS FOR CROSSING WARNING DEVICES IN 1980 DOLLARS ADJUSTED BY INFLATION FACTOR (1.36)³

¹ J. Heisler and J. Morrissey, <u>Rail-Highway Crossing Warning Device Life Cycle</u> <u>Cost Analysis</u>, (Washington, D.C.: U.S. Department of Transportation, March 1980).

² J. Morrissey, <u>The Effectiveness of Flashing Lights and Flashing Lights with</u> <u>Gates in Reducing Accident Frequency At Public Rail-Highway Crossings</u>, (Washington, D.C.: U.S. Department of Transportation, April 1980).

³ ibid., J. Heisler and J. Morrissey.

is that specified for the warning device to be installed. The model is an aid for the decision maker in his/her determination of the most cost-beneficial crossing improvements. Using the model, the decision-maker is provided with a list of possible improvement projects that maximize estimated benefits for the available funding.

An example of the results of resource allocation model application is shown in Table 3. The resource allocation model was used for a series of funding levels. For each funding level, the table presents the number of crossings nominated for improvement consideration with flashing lights and flashing lights with gates, and the expected number of accidents prevented per year. Although not shown in this example, the model also identifies each crossing by identification number and the suggested type of warning device which should be installed. The resource allocation model can be applied on a nationwide basis or for any defined set of crossings, such as those of a particular State, railroad, or region.

TABLE 3. RESOURCE ALLOCATION RESULTS FOR VARIOUS FUNDING LEVELS

TOTAL FUNDING LEVEL	BENEFIT	NUMBE	CR OF CROSSINGS	UPCRADED
BASED ON 1977 LIFE CYCLE COSTS (\$)	ACC IDENTS PREVENTED PER YEAR	PASSIVE TO FLASHING LIGHTS	PASSIVE TO CATES	FLASHING LIGHTS TO GATES
87,400,000	599	171	57 .	812
145,300,000	858	1,388	. 153	1,247
183,500,000	1,008	1,716	236	1,547
268,000,000	1,304	2,443	426	2,218
346,500,000	1.548	3,181	597	2,802
456,000,000	1,851	4,096	955	3,570
606,900,000	2,218	5,248	1,541	4,608
817,600,000	2,664	7,109	2,229	6,017
1,133,300,000	3,228	9,380	3,778	7,940

APPENDIX A

Table A-! gives the final accident prediction (A) for a crossing from the DOT accident prediction formula (equation 1) based on an initial prediction (a) from the basic formula (equation 2) and the crossing's five year accident history.

If the initial accident prediction (a) is 0.20 and the crossing experienced two accidents during the past five years, the final accident prediction (A) would be 0.311 accidents per year.

FINAL ACCIDENT PREDICTION PER YEAR FROM INITIAL PREDICTION AND ACCIDENT HISTORY (FIVE YEARS OF ACCIDENT DATA) TABLE A-1

	<u></u>					NUMBER	OF ACC	IDENTS (. (N)						
INITIAL PREDICTION FROM BASIC MODEL (4)	0	-	ы	M	4	۵ ۱	۰	~	CD	\$	10	11	12	EL	14
		0.040			071.0	00000		080.0	OCE O	072.0	0.400	0.440	0.480	0.500	0.540
20.0		0.054	0.100	0.146	0.192	0.238	0.285		0.377	0.423	0.469	0.515	0.562	0.408	0.654
0.02	0.015	0.047	0.119	0.170	0.222	0.274	0.326	0.378	OFF. O	0.481	0.533	0.585	0.637	0.689	0.741
0.03	0.021	0.079	91136	0.193	0.250	COE.0	9.364	0.421	0.479	0.536	0.593	0.650	0.707	0.764	0.821
0.04	0.028	0.090	0.152	0.214	0.276	0.338	0.400	0.462	0.524	0.586	0.648	0.710	0.772	428.0	0.897
0.05	EE0.0	0.100	0.167	0.233	0.300	0.367	0.433	0.500	0.567	0.633	0.700	0.767	0.833	0.900	0.967
0.06	0.039	0.110	0.181	0.252	0.323	0.394	0.465	0.535	0.606	0.477	0.748	0.819	0.870	0.941	1.032
0.07	0.044	0.119	0.194	0.269	0.344	0.419	0.494	0.569	0.644	0.719	0.794	0.869	0.944	1.019	1.094
0.08	0.048	0.127	0.206	0.285	0.364	0.442	0.521	0.600	0.679	0.758	0.836	0.915	0.994	1.073	1.152
0.09	0.053	0.135	0.218	0.300	0.382	0.445	0.547	0.629	0.712	0.794	0.876	0.959	1.041	1.124	1.206
0.10	0.057	0.143	0.229	0.314	0.400	0.486	0.571	0.657	0.743	0.829	0.914	1.000	1.086	1.171	1.257
0.20	0.089	0.200	0.311	0.422	0.533	0.644	0.756	0.867	0.978	1.089	1.200	115.1	1.422	1.533	1.644
05.0	0.109	0.236	0.364	0.491	0.618	0.745	0.873	1.000	1.127	1.255	1;382	1.509	1.636	1.764	1.891
0.40	0.123	0.262	0.400	0.538	0.677	0.815	0.954	1.092	1.231	965.I	1.508	1.646	1.785	1.923	2.062
0.50	EE1.0	0.280	0.427	0.573	0.720	0.847	£10.1	1.160	1.307	1.453	1;600	1.747	1.893	2.040	2.187
07.0	0.141	0.294	0.447	0.400	. 0.753	0.906	1.059	1.212	1.365	1.518	1.671	1.824	1.976	2.129	2.282
0.70	0.147	0.305	0.463	0.621	0.779	0.937	1.095	1.253	1.411	1.568	1.726	1.884	2.042	2.200	2.358
0.80	0.152	0.314	0.476	0.638	0.800	0.962	1.124	1.286	1.448	1.610	1.771	1.933	2.095	2.257	2.419
06.0	0.157	0.322	0.487	0.652	0.817	0.983	1.148	1.313	1.478	1.643	1.809	1.974	2.139	2.304	2.470
1.00	0.160	0.328	0.496	0.664	0.832	1.000	1.168	1.336	1.504	1.672	1.840	2.008	2.176	2.344	2.512
1.10	0.163	0.333	0.504	0.674	0.844	1.015	1.185	1.356	1.526	1.696	1.847	2.037	2.207	2.378	2.548
1.20	0.166	0.338	0.510	0.683	0.855	1.028	1.200	1,372	1,545	1.717	1.890	2,062	2.234	2 407	2.579
1.30	0.168	0.342	0.516	0.490	0.865	6E0.1	1.213	1.387	195.1	1.735	1.910	2.084	2,258	2.432	2.606
1.40	0.170	0.345	0.521	0.697	0.873	1.048	1.224	1.400	1.576	1.752	1.927	2 103	2.279	2.455	2.630
07.1	1/1.0	0.349	0 220	50/.0	0.88.0	1.00.1	1.54	1.411	480.1	1./00	747.I	2 1 7 0		2.4/4	10017
1.60	6/1.0	122.0	0.530	0.708	0.886	C90.I	1.243	1.422	1.600	8//.1	/6/ 1	CF1.2	2.314	2442	0/9.7
1./0	0.174	4cf.0	FFC.0	0./13	0.872	1.072	162.1	128.1	1.610	1./90	1.967	2.147	2,328	ROCIZ	799.7
1.80	0.176	0.356	0.537	0.717	0.898	1.078	1.259	1.439	1.620	1.800	1.980	2.161	2,341	2.522	2.702
1.90	0.177	0.358	0.540	0.721	0.902	1.084	1.265	1.447	1.628	1.809	1.991	2.172	2.353	2.535	2.716
2.00	0.178	0.360	0.542	0.724	0.907	1.089	1.271	1.453	1.636	1.818	2.000	2.182	2.364	2.547	2.729
2.10	0.179	0.362	0.545	0.728	0.911	1.094	1.277	1.460	1.643	1.826	2.009	2.191	2.374	2.557	2.740
2.20	0.180	E9E.0	0.547	0.731	0.914	1.098	1.282	1.465	1.649	1.833	2.016	2,200	2.384	2.567	2.751
2.30	0.180	0.345	0.549	0.733	0.918	1.102	1.286	1.471	1.455	1.839	2.024	2,208	2.392	2.576	2.761
2.40	0.181	0.366	0.551	0.736	0.921	1.106	1.291	1.475	1.460	1.845	2.030	2.215	2.400	2.585	2.770
2.50	0.182	0.367	0.553	0.738	0.924	1.109	1.295	1.480	1.665	1.851	2.036	2.222	2.407	2,593	2.778

9/81

APPENDIX B

Table B-1 lists equations for determining values of crossing characteristic factors used in the basic accident prediction formula (equation 2). A different set of equations is provided for each of the warning device categories: passive, flashing lights, and gates. Each set of factor equations should only be used for crossings with the warning device category for which it was designed. To predict the number of accidents at a crossing with crossbucks, for example, the passive set of equations would be used. For cases indicated in the table where the equation is shown as a constant 1.0, it was found that the characteristic did not have a statistical relationship to predicting crossing accidents.

If the warning devices at a particular crossing were upgraded in the last five years, it is preferable to use the set of equations for the warning device existing prior to upgrading and multiply the resulting basic accident prediction (a) by the appropriate effectiveness factor from Table 2. In developing the final prediction (A) for such a crossing, only accident history since the upgrading should be considered.

For example, if the warning devices at a crossing were upgraded from crossbucks to gates two years ago, a basic accident prediction (a) should be developed using the equation for "passive" crossings and the result should be multiplied by 0.84. Though five years of accident history may be available, only the accidents and the time elapsed since the upgrade (T=2) should be used in arriving at a final accident prediction (A).

TABLE B-1 EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a = K x EI x HT x DT x HP x HS x HT x HL

		1			
HIGIWAY LANES FACTOR	Ĩ	1.0	0.1380(h1-1)	e ⁰ .1036(h1-1)	9/81
HIGHHAY TYPE Pactor	H	e ⁻⁰ .1000(ht-1)	1.0	1.0	ht VALUE
MAX1MUM SPEED PACTOR	¥	e0.0077ms	1.0	0.1	NVENTORY CODE
HIGIIWAY PAVED FACTOR	HP	-0.6160(hp-1)	1.0	1.0	н.
DAY TIRU TRAINS FACTOR	DT	((4 + 0.2)/0.2) ^{0.1336}	((4 + 0.2)/0.2) ^{0.0470}	1.0	HIGIWAY TYPE
MAIN TRACKS FACTOR	TM	e ^{0.2094} mt	0.1088mt	e ^{0.2912m}	
EXPOSURE INDEX PACTOR	13	((c x t + 0.2)/0.2) ^{0.]]]4}	((c x t + 0.2)/0.2) ⁰ .2953	((c x t + 0.2)/0.2) ^{0.3} 116	highway vehicles per day trains per day
FORMULA CONSTANT	M	0.002268	919600.0	0.001088	e number of
CROSSING	CALEGORI	PASSIVE	PLASHING LIGHTS	GATES .	
	FACTOR FA	CROSSING FONDLA EXPOSURE MAIN DAY THRU HIGHMAY MAXIMM HIGHMAY HIGHMAY CROSSING FONSTANT FOR FACTOR F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{EVENNULA}{CATESING} \begin{array}{c c c c c c c c c c c c c c c c c c c $

t - number of trains per day

mt 🗝 number of main tracks

d = number of thru trains per day during daylight

01 06 09 09 09 09

Other principal arterial Minor arterial Major collector Minor collector Local

Interstate

12

URBAN Interstate Other frecuay and expressuay Other principal arterial Minor arterial Collector Local

19 2

hp = highway paved, yes = 1.0, no = 2.0

ms a maximum timetable speed, mph

ht = highuay type value

hl - number of highway lanes

APPENDIX C

Tables C-1, C-2, and C-3 provide numerical values for the crossing characteristic factors of the basic accident prediction formula (equation 2) for various characteristic levels. A different table is provided for each of the categories: passive, flashing lights, and gates. The values are to be used only for crossings with the warning device category for which it was designed. To predict the number of accidents at a crossing with flashing lights, Table C-2 would be used to obtain the factor values for substitution into the basic formula.

If the warning devices at a particular crossing were upgraded in the last five years, it is preferable to use the set of equations for the warning device existing prior to upgrading and multiply the resulting basic accident prediction (a) by the appropriate effectiveness factor from Table 2. In developing the final prediction (A) for such a crossing, only accident history since the upgrading should be considered.

For example, if the warning devices at a crossing were upgraded from crossbucks to gates two years ago, a basic accident prediction (a) should be developed using Table C-1 and the result should be multiplied by 0.84. Though five years of accident history may be available, only the accidents and the time elapsed since the upgrade (T=2) should be used in arriving at a final accident prediction (A).

TABLE C-1 FACTOR VALUES FOR CROSSINGS WITH PASSIVE WARNING DEVICES

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a - K x EI x MT x DT x HP x MS x HT x HL

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Maln		Day Thru	-	Highvay		Maximum Timetat	a ble	llíghuay Type		lítghway		
8 0* 1.00 0 1.00 0 1.00 0 1.00 1.10 <th1.10< th=""> <th1.10< th=""></th1.10<></th1.10<>	8 0* 1.00 0 1.00 0 1.00 0 1.00	"c" x "t"	EI	Tracks	щ	Traine	DT	Paved	Чŀ	Speed	SH	Code##	, IIT	Lanes	HL	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0*	1.00	0	1.00	0	1.00	l (yea)	1.00	0	1.00	11910	1.00	-	00.1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5	2.22	-	1.23	-	1.27			<u>ۍ</u>	1.04			2	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6- 10	3.30	2	1.52	5	1.38	2 (no)	0.54	0	1.08	02612	0.90		1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11- 20	4.24	-	1.87	-	1.45			15	1.12			4	1.00	
11 - 50 $5, 2.45$ $5, 2.45$ $5, 1.55$ $20 - 1.26$ 1.00 $12 - 100$ 1.03 1.01 1.01 1.01 1.01 1.01 1.01 $12 - 100$ 1.023 1.01 1.01 1.01 1.01 1.01 1.01 $12 - 100$ 1.023 1.01 1.01 1.01 1.01 1.01 1.01 $20 - 100$ 1.023 0.0123 0.0123 0.0133 0.0133 0.0133 0.0133 $20 - 100$ 1.011 $1.1-10$ 1.033 0.0133 0.0133 0.0133 $20 - 100$ 1.0033 1.0123 0.0133 0.0133 0.0133 $20 - 1000$ 1.0033 1.0133 0.0133 0.0133 0.0133 $20 - 1000$ 1.0033 1.0033 1.0033 1.0033 1.0033 $20 - 1000$ 1.0033 1.0133 1.0033 1.0033 1.0033 $20 - 1000$ 1.0033 1.01033 1.0033 1.0033 1.0033 $20 - 10003$ 1.0033 1.01033 1.0033 1.00333 1.00333 $20 - 10003$ 1.000333 1.000333 1.003333 1.003333 $20 - 10003333$ 1.0003333 1.0003333 1.0003333 $20 - 100033333$ 1.00033333 1.00033333 1.00033333 $20 - 1000333333$ 1.00033333 1.000333333 $1.0003333333333333333333333333333333333$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21- 30	5.01	4	2.31	4	1.50			20	1.17	06614	0.82	5	1.00	
9 100 $9 100$ $9 100$ 1.26 0.146 0.14 7 1.000 $121 - 200$ $9. 23$ $9. 1.26$ 0.146 0.61 $9. 1.00$ $121 - 200$ $9. 230$ 0.126 0.126 0.61 $9. 1.00$ $121 - 200$ 1.206 1.126 0.61 $9. 1.23$ 0.61 $9. 1.00$ $121 - 200$ 1.206 1.126 0.146 $9. 1.23$ 0.61 $9. 1.20$ $201 - 200$ 1.121 1.126 1.126 1.236 0.61 $9. 1.20$ $101 - 1000$ 1.122 1.120 1.206 1.236 0.61 $9. 1.00$ $101 - 1000$ 1.232 1.120 1.200 2.00 1.200 0.61 $9. 1.00$ $101 - 1000$ 1.232 1.100 2.000 1.932 1.100 1.100 1.100 $1001 - 1000$ 1.233 1.100 2.000 1.932 $9. 1.000$ 1.000 $2001 - 2000$ 2.333 1.100 2.000 1.000 1.000 1.000 $2001 - 2000$ 2.333 1.100 1.000 2.333 1.100 1.000 $2001 - 2000$ 2.334 1.100 2.333 1.100 1.000 $2001 - 2000$ 3.154 1.100 2.334 1.100 1.100 $2001 - 2000$ 3.154 1.100 1.100 3.154 1.100 $2001 - 2000$ 3.154 1.100 1.100 3.154 1.100 $2001 - 2000$ 3.154 1.100 <	31 - 80 $6 - 89$ $6 - 151$ $6 - 156$ 0.14 $7 - 100$ $21 - 200$ 9.29 $9 - 166$ 0.14 $7 - 100$ $21 - 200$ 9.29 $9 - 166$ 0.14 $7 - 100$ $21 - 200$ 9.29 $9 - 166$ 0.61 0.61 $9 - 100$ $201 - 400$ 11.20 11.20 12.93 09419 0.61 $9 - 100$ $201 - 400$ 11.20 11.20 21.90 1291 00419 0.61 $9 - 100$ $201 - 400$ 15.21 2190 1201 200 1201 0.61 <td< td=""><td>31- 50</td><td>5.86</td><td>Ś</td><td>2.85</td><td>ŝ</td><td>1.55</td><td></td><td></td><td>25</td><td>1.21</td><td></td><td></td><td>6</td><td>1.00</td><td></td></td<>	31- 50	5.86	Ś	2.85	ŝ	1.55			25	1.21			6	1.00	
$B_1 - 120$ 7.95 $T - 161$ 35 1.31 06417 0.61 9 1.00 $201 - 300$ 10.38 $9 - 1.65$ $9 - 1.$	11 - 120 7.55 $7 - 1.64$ 1.61 1.31 1.00 $201 - 200$ 10.33 1.64 1.64 0.61 $9 - 1.00$ $201 - 200$ 1.11 1.11 1.120 1.23 0.61 $9 - 1.10$ $201 - 200$ 1.121 1.120 1.23 0.61 0.61 $9 - 1.10$ $201 - 200$ 1.121 1.120 1.23 0.61 0.61 $9 - 1.10$ $201 - 200$ 1.121 1.120 1.200 2.09 0.61 0.61 $100 - 1300$ 1.231 $1.1-30$ 2.09 0.61 0.61 $100 - 1000$ 1.231 $1.1-30$ 2.09 0.61 0.61 $100 - 1000$ 1.231 $1.1-30$ 2.09 0.61 0.61 $100 - 2000$ 2.314 $1.1-30$ 2.09 0.61 0.61 $100 - 2000$ 2.314 $1.1-30$ 2.09 0.61 0.61 $2001 - 2000$ 2.314 $1.1-30$ 2.09 0.61 $2001 - 2000$ 2.314 $1.1-30$ 2.109 0.61 $2001 - 2000$ 2.314 $1.1-30$ 2.109 0.61 $2001 - 2000$ 2.314 $1.1-30$ $1.1-30$ 1.100 $2001 - 2000$ 2.314 $1.1-30$ 1.100 1.100 $2001 - 2000$ 2.314 $1.1-30$ 1.100 1.100 $2001 - 2000$ 2.314 $1.1-30$ 1.100 1.100 $2001 - 2000$ 2.314 $1.1-300$ 1.1000 1.1000 $2001 - 2$	51- 80	6.89	9	3.51	9	1.58	•		30	1.26	07616	0.74	~	1.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81- 120	7.95			1	1.61			35	1.31			80	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121- 200	9.29			æ (1.64	:		40 40	1.36	08417	0.67	م	1.00	
001 000 12.10 11.10 11.20 12.90 12.91 10.91	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	007 102				n (1.0					01100				
601 10.1 11.11 11-10 1.73 601 700 14.31 21-20 1.73 1001 1300 10.31 11-60 2.09 55 1.65 1001 1300 17.31 11-60 2.09 55 1.65 1001 1300 17.31 11-60 2.09 55 1.73 1301 1600 2.04 50 1.35 1.35 1.14 1301 1600 2.04 50 1.35 1.14 2.00 2501-2000 2.34 80 1.35 90 2.00 2010-6000 32.31 K=formula constant 80 1.35 2001-6000 32.31 K=formula constant 90 2.00 2001-6000 32.31 K=formula constant 80 1.35 1001-10000 32.31 K=forme 80 1.45 1001-10000 31.31 K=forme 601 601 601 1001-10000 31.31 Ffeetof 400 50' 1.00 1001-10000 <td>50150011.1111-2017.385015.3150150014.0121-0012.035515.55701100019.01100019.0131-602.005515.557011001190019.3131-602.00551.25701200020.3131-602.03551.351001100020.3131561.35502001200023.3953512.0032.352011400023.37$K^*$$K^*$multiplied by the number of traina per day, "t"20116001200032.37$K^*$$K^*$multiplied by the number of traina per day, "t"40011000133.31K^*formula constant2001100110011500032.33K^*formula constant6001800032.31K^*formula constant10011500032.31K^*formula constant10011500032.33$K^*$$K^*$multiplied by the number of traina per day, "t"10011500032.31$K^*$$K^*$$K^*$$K^*10011500034.33K^*$$K^*$$K^*10011500054.33K^*$$K^*$$K^*10011500054.33K^*$$K^*$$K^*10011500054.33K^*$$K^*$$K^*$10011500054.</td> <td>101 - 100</td> <td>12.06</td> <td></td> <td></td> <td>2</td> <td>1.69</td> <td></td> <td></td> <td>2</td> <td>1.47</td> <td>61960</td> <td>19.0</td> <td></td> <td></td> <td></td>	50150011.1111-2017.385015.3150150014.0121-0012.035515.55701100019.01100019.0131-602.005515.557011001190019.3131-602.00551.25701200020.3131-602.03551.351001100020.3131561.35502001200023.3953512.0032.352011400023.37 K^* K^* multiplied by the number of traina per day, "t"20116001200032.37 K^* K^* multiplied by the number of traina per day, "t"40011000133.31 K^* formula constant2001100110011500032.33 K^* formula constant6001800032.31 K^* formula constant10011500032.31 K^* formula constant10011500032.33 K^* K^* multiplied by the number of traina per day, "t"10011500032.31 K^* K^* K^* K^* 10011500034.33 K^* K^* K^* 10011500054.33 K^* K^* K^* 10011500054.33 K^* K^* K^* 10011500054.33 K^* K^* K^* 10011500054.	101 - 100	12.06			2	1.69			2	1.47	61960	19.0			
501-700 14.02 21-90 1.53 701-1000 16.21 21-90 1.54 701-1000 16.21 21-60 2.09 75 701-1000 16.21 21-60 2.09 75 1301-2000 20.21 200 2.09 75 2010-2000 2010 2011 200 2.09 2011-2000 2012 200 2.09 75 2010-2000 23.39 2.09 2.00 2.09 2010-2000 23.31 K = formula constant 90 2.00 2010-10000 35.31 K - formula factor 90 2.00 15001-20000 44.31 MT = and track factor 90 2.00 15001-20000 54.31 MT = and track factor 90 2.00 1001-20000 54.31 MT = and track factor 90 </td <td>0.11 - 0.00$1.4.12$$2.1 - 0.0$$1.5.13$$0.11 - 0.00$$16.21$$100$$2.09$$5.0$$1.71$$0.11 - 10.00$$16.21$$100$$2.09$$5.0$$1.71$$0.11 - 10.00$$19.11$$10.1 - 10.00$$1.20$$1.20$$0.101 - 2000$$2.001$$2.09$$5.01$$1.20$$2001 - 2000$$2.091$$0.01$$1.20$$2001 - 2000$$2.091$$0.01$$1.20$$2001 - 2000$$2.2.99$$0.01$$1.20$$2001 - 2000$$2.2.99$$0.01$$1.20$$2001 - 2000$$2.2.99$$0.01$$1.20$$0.01 - 1000$$3.2.71$<math>K = formula constant$0.01 - 1000$$3.2.71$<math>K = formula constant$0.01 - 1000$$3.2.91$$K = 1000$$0.01 - 1000$$3.2.91$$K = 1000$$0.01 - 10000$$3.2.91$$K = 1000$$0.01 - 10000$$3.2.91$$K = 1000$$0.01 - 10000$$3.2.91$$K = 1000$$0.01 - 10000$$3.2.91$$K = 10000$$0.01 - 20000$$5.000$$11.7 - 10000$$0.001 - 20000$$5.000$$11.7 - 10000$$0.001 - 20000$$5.000$$11.7 - 100000$$0.001 - 20000$$5.00$$11.7 - 10000000$$0.001 - 100000$$9.20$$0.001 - 100000$$9.20$$0.001 - 100000$$9.20$$0.001 - 10000000000000000000000000000000$</math></math></td> <td>401- 500</td> <td>11.61</td> <td></td> <td></td> <td>11-20</td> <td>1.78</td> <td></td> <td></td> <td>5</td> <td>1.53</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.11 - 0.00 $1.4.12$ $2.1 - 0.0$ $1.5.13$ $0.11 - 0.00$ 16.21 100 2.09 5.0 1.71 $0.11 - 10.00$ 16.21 100 2.09 5.0 1.71 $0.11 - 10.00$ 19.11 $10.1 - 10.00$ 1.20 1.20 $0.101 - 2000$ 2.001 2.09 5.01 1.20 $2001 - 2000$ 2.091 0.01 1.20 $2001 - 2000$ 2.091 0.01 1.20 $2001 - 2000$ $2.2.99$ 0.01 1.20 $2001 - 2000$ $2.2.99$ 0.01 1.20 $2001 - 2000$ $2.2.99$ 0.01 1.20 $0.01 - 1000$ $3.2.71$ $K = formula constant0.01 - 10003.2.71K = formula constant0.01 - 10003.2.91K = 10000.01 - 10003.2.91K = 10000.01 - 100003.2.91K = 10000.01 - 100003.2.91K = 10000.01 - 100003.2.91K = 10000.01 - 100003.2.91K = 100000.01 - 200005.00011.7 - 100000.001 - 200005.00011.7 - 100000.001 - 200005.00011.7 - 1000000.001 - 200005.0011.7 - 100000000.001 - 1000009.200.001 - 1000009.200.001 - 1000009.200.001 - 10000000000000000000000000000000$	401- 500	11.61			11-20	1.78			5	1.53					
601-700 14.42 11-40 2.00 65 1.65 1001-1100 17.31 41-60 2.09 55 1.78 1001-1100 15.31 31-40 2.09 55 1.78 1001-1200 22.42 91 1.85 91 1.20 2001-2000 23.59 57 1.78 90 2.00 2001-8000 23.59 57 1.78 90 2.00 2001-8000 32.71 K-4 ************************************	501 - 700 14.82 $11-60$ 2.00 55 1.55 $701 - 1000$ 17.23 $41-60$ 2.09 55 1.78 $1001 - 1300$ 17.23 $41-60$ 2.09 55 1.78 $1001 - 2300$ 20.31 80 1.93 80 1.93 $1001 - 2300$ 2.242 80 1.93 80 1.93 $2501 - 3000$ 22.342 90 2.00 2.00 $2010 - 2000$ 22.342 90 2.00 $2010 - 6000$ 22.39 900 2.00 $601 - 6000$ 32.31 87 - multer lake factor $601 - 6000$ 32.31 87 - multer lake factor $1001 - 15000$ 34.31 117 - multer lake factor $1001 - 10000$ 35.91 117 - multer lake factor $1001 - 10000$ 35.91 117 - multer lake factor $1001 - 10000$ 35.91 117 - multer lake factor $1001 - 10000$ 35.91 117 - multer lake factor $10001 - 10000$ 35.91 117 - multer lake factor $20001 - 20000$ 44.3 117 - multer lake factor $20001 - 20000$ 51.63 111 - multer lake factor $20001 - 20000$ 65.08 11 - multer lake factor $20001 - 20000$ 91.34 $110001 - 10000$ 91.44 $110001 - 10000$ 91.44 $110001 - 10000$ 91.44 $110001 - 10000$ 91.44 $110001 - 10000$ 91.44 $110001 - 100000$ 91.44 11000	009 -100	14.02			5 I-30	1.91			09	. 6C . I					
701-1000 16.21 $41-60$ 2.09 70 1.21 1301-150025.0020.0135 1.92 35 1.92 2301-250025.0320.0135 1.92 35 1.92 2301-250025.0320.01 2.000 $2.1.97$ 35 35 1.92 2301-50025.13 7.45 300 $2.1.97$ 35 35 1.92 2001-50025.13 7.47 1.92 300 2.00 3001-60032.73 $K = formula constant902.006001-900035.79K = formula constant9002.008001-1000035.79K = formula constant9002.008001-900035.79K = formula constant1000-100032.418001-1000035.79K = formula constant1000-100032.418001-1000035.79K = formula constant1000-100032.418001-1000035.99K = formula constant1000-1000032.418001-1000031.45117 = highway fare factor1000-1000034.4110001-1000036.48117 = highway lares factor1000-1000034.4210001-1000036.4811000-1000034.4211000-1000010001-1000034.4211000-1000034.4210001-1000034.4211000-1000034.4210001-1000034.4211000-1000034.4210001-10000034.4211000-$	701-1000 16.21 41-60 2.09 70 1.11 1301-1000 16.21 41-60 2.09 70 1.11 1301-1000 16.21 41-60 2.09 70 1.12 1301-1000 19.17 80 1.85 80 1.85 1301-1000 23.19 90 2.00 20.00 1001-2000 23.95 80 1.85 90 2.00 1001-2000 23.95 80 1.85 90 2.00 1001-2000 23.91 80 1.85 90 2.00 1001-10000 39.71 81* anubler of highway vehicles per day, "c", multiplied by the number of traina per day, "t" 1001-10000 39.71 81* exposure factor 1001-10000 44.31 97 49* 45* 1001-10000 44.31 97 44* 44* 1001-10000 51.65 98 98 45* 1001-10000 51.65 98 98 45* 117 1001-10000 51.65 98 98 45	601 - 700	14.82			31-40	2.00			65	1.65					
1001-1300 17.33 75 1.78 1011-1500 21.93 85 1.95 1611-2000 20.01 20.01 20.01 2501-2000 23.93 90 2.00 2001-4000 23.93 90 2.00 2001-4000 23.93 90 2.00 2001-4000 32.34 400 2.03 2001-4000 32.39 90 2.00 6001-8000 32.13 400 80 1.44 8001-15000 32.13 91 1.4 1.4 8001-15000 32.13 91 1.4 1.4 8001-15000 32.13 91 1.4 1.4 8001-15000 32.13 91 1.4 1.4 10001-15000 4.4 1.4 1.4 1.4 11001-15000 51.63 1.4 1.4 1.4 2001-10000 51.63 1.4 1.4 1.4 2001-10000 51.63 1.4 1.4 1.4 2001-10000 51.63 1.6 1.6 <td< td=""><td>1001-1300 17.33 00 17.43 1001-1500 23.01 19.3 00 1501-2000 23.93 00 1.05 1501-2000 23.93 00 2.00 2501-2500 23.93 00 2.00 2001-2000 23.93 """"""""""""""""""""""""""""""""""""</td><td>101-1000</td><td>16.21</td><td></td><td></td><td>41-60</td><td>2.09</td><td>•</td><td></td><td>20</td><td>1.1</td><td></td><td></td><td></td><td></td><td></td></td<>	1001-1300 17.33 00 17.43 1001-1500 23.01 19.3 00 1501-2000 23.93 00 1.05 1501-2000 23.93 00 2.00 2501-2500 23.93 00 2.00 2001-2000 23.93 """"""""""""""""""""""""""""""""""""	101-1000	16.21			41-60	2.09	•		20	1.1					
1301-1600 19.17 80 1.85 1601-2500 22.03 90 2.04 2501-2500 22.93 90 2.00 3001-4600 23.19 90 2.00 3001-6000 39.25 % % % 0001-6000 32.13 % % % 0001-1000 32.13 % % % 0001-1000 32.13 % % % 0001-1000 32.11 K = apounce Index factor %	1301-1600 19.17 80 1.85 1601-2000 20.01 20.01 90 2.00 201-2000 22.42 90 2.00 201-2000 22.93 90 2.00 201-2000 22.92 90 2.00 201-2000 22.43 * * 201-2000 22.33 * * 201-2000 23.26 * * 201-2000 23.26 * * 601-1000 35.39 * * * 601-1000 35.39 * * * * 1500-1000 35.39 * * * * * 1500-1000 35.39 * <	1001-1300	17.93							75	1.78					
1601-2000 20.81 90 2.00 2501-2000 21.93 2.00 2.00 2501-2000 21.94 90 2.00 2501-4000 21.73 K = formula constant 90 2.00 6001-6000 32.73 K = formula constant 90 2.00 6001-6000 32.73 K = formula constant 90 2.00 6001-10000 35.59 VC = with - muber of highway vehicles per day, "C", multiplied by the number of traina per day, "I" 8001-10000 35.63 HT Highway paved factor 15001-20000 44.43 MT = aay thru traina factor 15001-20000 51.63 HT Highway preef factor 20001-20000 51.63 HI - highway ize factor 2001-20000 50.08 HL - highway ize factor 2001-20000 50.08 HL - highway ize factor 2001-20000 50.98 HI - highway ize factor 2001-20000 50.98 HL - highway ize factor 2001-20000 50.98 HL - highway ize factor 2001-20000	1601-2000 20.01 2501-2000 21.92 2501-2000 21.93 2501-2000 21.93 2501-4000 21.93 4001-4000 22.73 5001-2000 22.73 6001-4000 22.73 6001-4000 22.73 6001-8000 22.73 8001-10000 22.73 8001-10000 22.73 8001-10000 22.73 8001-10000 22.73 8001-10000 22.73 8001-10000 24.43 8001-10000 44.43 8001-2000 44.43 8001-2000 44.43 8001-2000 44.43 8001-2000 44.43 8001-2000 44.43 8001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-2000 54.94 80001-10000 54.94	1301-1600	16.91							80	1.85			•		
2001-2500 21.42 2001-2500 21.42 3001-4000 21.99 3001-4000 21.91 6001-8000 21.21 K = formula constant 6001-8000 21.21 K = formula constant 8001-10000 35.59 "c" x "t" = number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 10001-15000 35.59 "c" x "t" = exponent 15001-2000 44.43 DTT = exponent 15001-2000 48.31 DTT = day thru trains factor 15001-2000 48.31 DTT = day thru trains factor 15001-2000 48.31 DTT = day thru trains factor 15001-2000 55.98 MS = maximum ilactable append factor 20001-2000 60.81 HTT = highway inves factor 20001-2000 65.08 HL = highway inves factor 6001-7000 68.81 L = highway lawes factor 10001-10000 94.42 10001-10000 94.42 10001-10000 19.94 110001-13000 109.92 10001-13000 109.92 10001-13000 109.92	2001 - 2500 22.42 90 2.00 3011 - 4000 32.35 "c" x "t" = number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 3001 - 6000 35.59 "c" x "t" = number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 8001 - 10000 35.59 "c" x "t" = number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 8001 - 10000 35.59 "c" x "t" = number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 8001 - 10000 35.59 "c" x "t" = number of factor 10001 - 15000 35.16 HP = highway paved factor 20001 - 25000 51.65 HP = highway laves factor 20001 - 20000 65.08 HL = highway laves factor 20001 - 20000 65.08 HL = highway laves factor 20001 - 10000 73.4 HL = highway laves factor 20001 - 10000 73.4 L = highway laves factor 20001 - 10000 73.4 L = highway laves factor 20001 - 10000 73.4 L = highway laves factor 20001 - 10000 73.4 L = highway laves factor 20001 - 10000 19.42 L = highway laves factor	1601-2000	20.81							82	1.92					
301-1000 21.97 301-6000 25.36 4001-6000 32.73 K = formula constant 6001-15000 32.71 K = formula constant 6001-15000 32.71 K = formula constant 6001-15000 32.71 K = formula constant 10001-15000 32.71 K = apy thir state 15001-25000 40.14 15001-25000 40.14 15011-20000 40.34 15011-20000 40.34 15001-25000 40.34 16001-25000 40.34 17001-20000 40.34 17001-20000 40.34 17001-20000 40.34 17001-20000 40.34 17001-20000 40.34 17001-20000 40.34 17001-20000 40.44 17001-20000 40.44 17001-20000 40.44 17001-20000 40.44 17001-20000 40.44 17001-20000 40.44 18001-20000 44.4 10001-120000	2501- 3000 23.99 301- 6000 23.59 4001- 6000 33.53 °c" x "" - number of highway vehicles per day, "c", wultiplied by the number of trains per day, "t" 6001- 8000 33.53 °c" x "" - number of highway vehicles per day, "c", wultiplied by the number of trains per day, "t" 1001- 15000 44.43 hT - main tracks factor 15001- 20000 53.98 HS - maximum tlatcable speed factor 25001- 20000 53.98 HS - maximum tlatcable speed factor 25001- 20000 55.08 HL - highway lanes factor 10001- 40000 55.08 HL - highway lanes factor 20001- 20000 13.74 20001- 20000 13.74 20001- 10000 19.44 110001- 130000 10.22 20001- 10000 100.32 20001- 100000 100.44 110001- 130000 100.44 20001- 10000 109.44 20001- 10000 100.44 20001-	2001-2500	22.42							06	2.00					
3001 - 4000 25.98 6001 - 6000 32.13 K = formula constant 6001 - 6000 35.13 "c" x "t" = number of highway vchicles per day, "c", multiplied by the number of trains per day, "t" 8001 - 10000 35.13 "c" x "t" = number of highway vchicles per day, "c", multiplied by the number of trains per day, "t" 8001 - 10000 35.14 TT = wronsure index factor 10001 - 15000 40.31 DT = day thru trains factor 20001 - 25000 48.31 DT = day thru trains factor 20001 - 20000 51.65 HF = highway paved factor 20001 - 20000 55.08 HL = highway lanes factor 20001 - 60000 65.08 HL = highway lanes factor 20001 - 10000 91.94 He = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 10000 91.94 HI = highway lanes factor 20001 - 100000 19.94	3001-400025.384001-600029.13K = formula constant601-600039.11K = formula constant6001-1000039.11Ff = exposure index factor1001-1500044.31Ff = main tracks factor15001-2500048.31Ff = main tracks factor15001-2500048.31Ff = main tracks factor15001-2500048.31Ff = main tracks factor15001-2500051.68Ff = highway type factor20001-2500051.68Hf = highway type factor10001-1500051.68Hi = highway type factor20001-2000051.94Hi = highway type factor10001-10000051.44Hi = highway type factor10001-2000051.44Hi = highway type factor10001-10000051.44Hi = highway type factor10001-10000051.44Hi = highway type factor10001-10000051.94Hi = highway type factor10001-100000 <td>2501- 3000</td> <td>23.97</td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2501- 3000	23.97			:					•					
4001- 600029.266001- 800032.73K = formula constant6001- 800035.73K = formula constant6001- 800035.71K = formula constant6001- 800035.71K = formula constant8001- 800035.71K = formula constant10001- 1500039.71ET = exposure index factor15001- 2000044.43NT = main titacts factor15001- 2000048.31DT = day thru trains factor15001- 2000051.68HF = highway preed factor20001- 2000055.08HL = highway type factor20001- 2000065.08HL = highway inset factor20001- 2000065.08HL = highway inset factor20001- 1000073.7470001- 9000073.7470001- 9000073.7470001- 9000094.42110001- 11000094.42110001- 11000094.42110001- 11000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94110001- 12000091.94 <td> 4001 - 6000 29.26 4001 - 6000 32.71 K = formula constant 6001 - 8000 32.71 K = formula constant 6001 - 8000 39.71 ET = exposure index factor 10001 - 15000 34.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 51.63 NP = hghuay paved factor 25001 - 5000 51.68 ML = hghuay paved factor 2001 - 6000 51.98 MS = maximum timerable speed factor 2001 - 6000 51.98 MS = maximum timerable speed factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.94 ML = highway lanes factor 2001 - 9000 84.42 2000 - 13000 84.42 2000 - 13000 100.92 2000 - 10000 100.92 20000 - 10000 100.92 2000 - 10000 100.92 <l< td=""><td>3001-4000</td><td>25,98</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<></td>	 4001 - 6000 29.26 4001 - 6000 32.71 K = formula constant 6001 - 8000 32.71 K = formula constant 6001 - 8000 39.71 ET = exposure index factor 10001 - 15000 34.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 4.43 NT = main tracks factor 15001 - 2000 51.63 NP = hghuay paved factor 25001 - 5000 51.68 ML = hghuay paved factor 2001 - 6000 51.98 MS = maximum timerable speed factor 2001 - 6000 51.98 MS = maximum timerable speed factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.98 ML = highway lanes factor 2001 - 6000 51.94 ML = highway lanes factor 2001 - 9000 84.42 2000 - 13000 84.42 2000 - 13000 100.92 2000 - 10000 100.92 20000 - 10000 100.92 2000 - 10000 100.92 <l< td=""><td>3001-4000</td><td>25,98</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	3001-4000	25,98													
6001-8000 32.71 K = formula constant 6001-10000 33.51 "c" x "" number of highway vehicles per day, "c", multiplied by the number of trains per day, "t" 10001-15000 33.71 K = formula constant 15001-20000 44.43 NT = main tracks factor 15001-20000 48.31 DT = day threat trains factor 20001-20000 51.65 HF = highway paved factor 20001-0000 53.98 HS = maximum timerable speed factor 20001-0000 63.08 HT = highway iype factor 20001-0000 63.08 HL = highway iype factor 20001-10000 94.42 HL = highway iype factor <td< td=""><td>6001-8000 32.71 K = formula constant 8001-10000 35.59 "c" x "" = number of highway vehicles per day, "c", wuitiplied by the number of trains per day, "t" 1001-15000 35.59 "c" x "" = number of highway vehicles per day, "c", wuitiplied by the number of trains per day, "t" 15001-15000 39.11 ET = argosure index factor 2001-15000 44.43 NT = main tracks factor 2001-15000 48.31 DT = day thru trains factor 2001-20000 51.65 HP = highway paved factor 2001-50000 53.98 MS = main untereable speed factor 2001-60000 63.81 IT = highway lanes factor 5001-60000 63.08 ML = highway lanes factor 5001-10000 7.44 NT = main untereable speed factor 5001-50000 63.08 ML = highway lanes factor 5001-110000 7.44 NT = highway lanes factor 5001-110000 7.44 NT = highway lanes factor 7001-110000 9.44 110001-110000 7001-110000 9.44 110001-110000 110001-110000 9.44 110001-110000 9.44 110001-1100000 9.</td><td>0009 -1005</td><td>29.26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	6001-8000 32.71 K = formula constant 8001-10000 35.59 "c" x "" = number of highway vehicles per day, "c", wuitiplied by the number of trains per day, "t" 1001-15000 35.59 "c" x "" = number of highway vehicles per day, "c", wuitiplied by the number of trains per day, "t" 15001-15000 39.11 ET = argosure index factor 2001-15000 44.43 NT = main tracks factor 2001-15000 48.31 DT = day thru trains factor 2001-20000 51.65 HP = highway paved factor 2001-50000 53.98 MS = main untereable speed factor 2001-60000 63.81 IT = highway lanes factor 5001-60000 63.08 ML = highway lanes factor 5001-10000 7.44 NT = main untereable speed factor 5001-50000 63.08 ML = highway lanes factor 5001-110000 7.44 NT = highway lanes factor 5001-110000 7.44 NT = highway lanes factor 7001-110000 9.44 110001-110000 7001-110000 9.44 110001-110000 110001-110000 9.44 110001-110000 9.44 110001-1100000 9.	0009 -1005	29.26													
8001- 10000 35.59 "C" x "t" - number of highway vehicles per day, "C", multiplied by the number of trains per day, "t" 10001- 15000 39.71 ET - exposure index factor 10001- 25000 48.31 DT - day thu trains factor 20001- 25000 51.65 HP - highway paved factor 20001- 25000 51.65 HP - highway paved factor 20001- 40000 51.65 HP - highway paved factor 20001- 40000 55.98 HS - maximum tlacenter 30001- 40000 50.81 HT - highway lanes factor 30001- 50000 60.81 HT - highway lanes factor 30001- 10000 68.81 117 - highway lanes factor 30001- 10000 50.44 1117 - highway lanes factor 30001- 10000 19.44 11001- 10000 100001- 100000 19.44 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 91.94 110001- 180000 19.94 110001- 180000	8001-10000 35.59 "c" x "t" = number of Mighway vehicles per day, "c", multiplied by the number of trains per day, "t" 10001-15000 39.71 ET = exponsure Index factor 15001-25000 48.31 DT = day thru trains factor 20001-25000 48.31 DT = day thru trains factor 20001-25000 51.65 HP = highway paved factor 20001-0000 51.65 HP = highway paved factor 20001-0000 55.08 HI = highway lanes factor 20001-0000 65.08 HL = highway lanes factor 20001-10000 74.43 HI = highway lanes factor 20001-10000 74.4 HI = highway lanes factor 20001-10000 94.42 HI = highway lanes factor	6001- 8000	32.73	u L X	ormula c	constant										
10001 - 15000 39.11 ET - exposure Index factor 15001 - 20000 44.43 MT - main tracks factor 25001 - 20000 51.63 MP - highway paved factor 20001 - 40000 55.98 MS - maximum time tactor 30001 - 40000 55.98 MS - maximum time tactor 40001 - 50000 60.81 HT - highway lanes factor 60001 - 70000 68.01 HT - highway lanes factor 60001 - 70000 63.02 117 - highway lanes factor 10001 - 110000 74.42 111 - highway lanes factor 10001 - 110000 14.42 112 - highway lanes factor 10001 - 110000 14.42 110001 110001 - 130000 14.42 119000 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 110001 - 130000 14.42 1100001 - 14.4 <td>10001-15000 39.11 ET - exposure Index factor 15001-20000 44.43 MT - main tracks factor 25001-20000 48.31 MT - main tracks factor 20001-40000 55.98 MS - maximum tractable speed factor 30001-50000 55.98 MS - maximum tractable speed factor 30001-50000 55.98 MS - maximum tractable speed factor 40001-50000 55.08 ML - highway lanes factor 40001-50000 55.08 ML - highway lanes factor 40001-50000 55.08 ML - highway lanes factor 40001-10000 94.4 110000 100001-110000 94.42 110000 110001-130000 84.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 19.42 110000 1100001-130000 19.42 110000 1100001-130000 19.42 110000 1100001-118.87<!--</td--><td>8001-1000</td><td>35.59</td><td>u</td><td></td><td>umber of</td><td>highuay</td><td>vehicles per</td><td>'day,</td><td>c', mult.</td><td>Iplied by</td><td>the number</td><td>of trair</td><td>is per day, '</td><td>-</td><td></td></td>	10001-15000 39.11 ET - exposure Index factor 15001-20000 44.43 MT - main tracks factor 25001-20000 48.31 MT - main tracks factor 20001-40000 55.98 MS - maximum tractable speed factor 30001-50000 55.98 MS - maximum tractable speed factor 30001-50000 55.98 MS - maximum tractable speed factor 40001-50000 55.08 ML - highway lanes factor 40001-50000 55.08 ML - highway lanes factor 40001-50000 55.08 ML - highway lanes factor 40001-10000 94.4 110000 100001-110000 94.42 110000 110001-130000 84.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 94.42 110000 110001-130000 19.42 110000 1100001-130000 19.42 110000 1100001-130000 19.42 110000 1100001-118.87 </td <td>8001-1000</td> <td>35.59</td> <td>u</td> <td></td> <td>umber of</td> <td>highuay</td> <td>vehicles per</td> <td>'day,</td> <td>c', mult.</td> <td>Iplied by</td> <td>the number</td> <td>of trair</td> <td>is per day, '</td> <td>-</td> <td></td>	8001-1000	35.59	u		umber of	highuay	vehicles per	'day,	c', mult.	Iplied by	the number	of trair	is per day, '	-	
15001- 20000 44.43 WT = main tracks factor 2001- 25000 48.31 DT = day thut trains factor 2001- 20000 55.98 MS = maximum tracted factor 30001- 40000 55.98 MS = maximum tractable speed factor 40001- 50000 60.87 HT = highway type factor 40001- 50000 65.08 HL = highway lawes factor 40001- 10000 65.08 HL = highway lawes factor 70001- 90000 73.74 90001- 110000 94.4 110001- 130000 84.42 110001- 130000 84.42 110001- 130000 84.42 110001- 130000 84.42 110001- 130000 84.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 19.44 110001- 130000 14.42 110001- 130000 14.42 110001- 130000 14.42 <t< td=""><td>15001- 20000 44.43 WT = main tracks factor 2001- 25000 48.13 DT = day thut trains factor 2001- 20000 48.13 DT = day thut reains factor 2001- 40000 55.98 MS = maximum tlactable speed factor 3001- 40000 55.98 MS = maximum tlactable speed factor 4001- 50000 60.87 HT = highway type factor 5001- 60000 65.08 HL = highway lanes factor 5001- 10000 51.44 II = highway lanes factor 5001- 10000 51.44 II = highway lanes factor 7001- 30000 91.44 II = highway lanes factor 110001- 110000 91.44 II = highway lanes factor 110001- 110000 91.94 II = highway lanes factor 110001- 110000 91.94 II = highway type cades, see Table B-1.</td><td>10001-15000</td><td>39.71</td><td>- 13</td><td>exposure</td><td>i Index fa</td><td>ctor</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	15001- 20000 44.43 WT = main tracks factor 2001- 25000 48.13 DT = day thut trains factor 2001- 20000 48.13 DT = day thut reains factor 2001- 40000 55.98 MS = maximum tlactable speed factor 3001- 40000 55.98 MS = maximum tlactable speed factor 4001- 50000 60.87 HT = highway type factor 5001- 60000 65.08 HL = highway lanes factor 5001- 10000 51.44 II = highway lanes factor 5001- 10000 51.44 II = highway lanes factor 7001- 30000 91.44 II = highway lanes factor 110001- 110000 91.44 II = highway lanes factor 110001- 110000 91.94 II = highway lanes factor 110001- 110000 91.94 II = highway type cades, see Table B-1.	10001-15000	39.71	- 13	exposure	i Index fa	ctor							-		
20001- 25000 48.31 DT = day thui trains factor 20011- 30000 51.65 HP = highway paved factor 20011- 30000 51.65 HP = highway paved factor 20011- 50000 60.87 HT = highway type factor 50011- 60000 65.08 HL = highway type factor 50011- 60000 63.08 HL = highway type factor 50001- 70000 61.17 + ighway lanes factor 50001- 110000 91.42 11 110001- 110000 94.42 11 110001- 110000 94.42 110000 110001- 110000 94.42 110000 110001- 110000 19.44 110000 110001- 120000 19.42 110000 110001- 120000 19.42 110000 110001- 120000 19.42 110000 110001- 120000 19.42 110000 110001- 120000 19.42 110000 120001- 120000 19.43 110000 130001- 120000 19.43 11000 130001- 130000 19.43 11000 141 110000 19.44	20001- 25000 48.31 DT = day thru trains factor 25001- 30000 51.65 HF = highway paved factor 25001- 30000 51.65 HF = highway paved factor 20001- 50000 60.87 HT = highway type factor 50001- 50000 60.81 HT = highway type factor 50001- 70000 65.08 HL = highway lanes factor 50001- 70000 63.08 HL = highway lanes factor 60001- 70000 64.42 110000 110001- 110000 74.42 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 91.94 110001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 10001- 130000 10.94 100001- 130000 10.94 <td>15001- 20000</td> <td>64.43</td> <td>nt -</td> <td>main tra</td> <td>icks facto</td> <td></td>	15001- 20000	64.43	nt -	main tra	icks facto										
2001 3000 51.03 Mr mr miguay pare factor 4001 5000 55.08 ML Highway type factor 5001 6000 55.08 ML Highway type factor 5001 5000 65.08 ML Highway type factor 5001 7000 68.81 ML Highway lanes factor 7001 9000 73.44 1000 19.44 10001 19000 84.42 10000 19.94 110001 180000 91.94 10001 19009 20001 19000 19.94 10000 19.94 110001 180000 91.94 10001 19009 210001 19000 19.94 10001 19.94 100001 19.099 100.92 10000 19.94 100001 19.94 18.87 18.75 19.75 100001 19.94 18.87 19.75 19.75 100001 19.94 18.87 19.75 19.75 100001 19.94 19.96 19.75 <td< td=""><td>2001-2000 51.03 AT - nightway pared factor 2001-2000 50.08 HT - highway type factor 4001-5000 65.08 HL - highway lanes factor 5001-6000 65.08 HL - highway lanes factor 5001-10000 63.08 HL - highway lanes factor 5001-10000 63.08 HL - highway lanes factor 5001-10000 63.44 1 110001-110000 94.42 110001-110000 91.44 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 10.94 110001-110000 10.94 110001-110000 10.94 110001-110000 10.94 1100001-110000 10.94</td><td>20001- 25000</td><td>48.31</td><td>TO TO</td><td>day thru</td><td>i trains f</td><td>actor</td><td></td><td>•</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td>•</td></td<>	2001-2000 51.03 AT - nightway pared factor 2001-2000 50.08 HT - highway type factor 4001-5000 65.08 HL - highway lanes factor 5001-6000 65.08 HL - highway lanes factor 5001-10000 63.08 HL - highway lanes factor 5001-10000 63.08 HL - highway lanes factor 5001-10000 63.44 1 110001-110000 94.42 110001-110000 91.44 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 91.94 110001-110000 10.94 110001-110000 10.94 110001-110000 10.94 110001-110000 10.94 1100001-110000 10.94	20001- 25000	48.31	TO TO	day thru	i trains f	actor		•		×					•
J0001- 40000 35.98 MS = maximum_flactor J0001- 50000 60.087 HT = highway iype factor J0001- 70000 60.081 HT = highway iames factor J0001- 100000 99.44 HI J10001- 100000 99.44 J114 J10001- 100000 99.44 J124 J10001- 100000 91.94 J124 J10001- 1180000 91.94 J124 J10001- 370000 109.94 J124 J10001- 370000 J18.87 J124 J10001- 370000 J18.87 J184 J10001- 370000 J18.87 J184 J10001- 370000 J18.87 J184 J1100101- 370000 J18.87 J18.87 J1100101- 370000 J18.87 J18.87 J10001- 370000 J18.87 J18.87 J100001- 370000 J18.87 J18	J0001- 40000 35.98 MS = maximum_flactor 5001- 50000 60.87 HT = highway type factor 5001- 70000 60.81 HT = highway lanes factor 5001- 10000 73.74 10011 70001- 10000 9.44 110000 10001- 10000 9.44 110011 10001- 10000 9.44 11001 10001- 10000 9.44 11001 10001- 10000 9.44 11001 10001- 130000 9.44 13001 10001- 130000 19.44 14 10001- 130000 19.44 14 10001- 130000 19.44 14 10001- 130000 19.44 14 10001- 130000 19.44 14 10001- 130000 10.92 20000 10001- 130000 10.92 14 10001- 130000 10.94 14 10001- 130000 10.92 14 10001- 130000 19.45 14 10001- 130000 19.45 14 10001- 14 14 14 14 14 1				n Kiway	haved lac		•								
50001-50000 60.08 ML - Mighway lanes factor 60001-70000 68.81 ML - Mighway lanes factor 70001-90000 73.74 74 70001-100000 94.44 10001-190000 10001-180000 94.42 10001-180000 94.94 10001-190000 94.94 10001-190000 94.94 10001-190000 94.94 10001-190000 94.94 10001-190000 14.94 10001-190000 14.94 10001-190000 14.94 10001-190000 14.94 10001-190000 14.94 10001-190000 14.94 10001-170000 118.67 100001-170000 118.67	0001- 5000 00.00 0.0.0 0.1.1 0.0.0 0.0.0 0.0.0	20001 - 10007	84.00	2 f	Daxiou	Clmerable	Bpeed I	ACTOF								
6001- 7000 68.81 7001- 9000 73.74 9001- 110000 84.42 11001- 180000 84.92 11001- 180000 14.94 18001- 230000 100.92 230001- 370000 109.94 30001- 370000 118.87 3 fhan one train per day.	6001-7000 68.81 7001-9000 73.74 9001-110000 73.74 110001-130000 84.42 110001-230000 10.94 18001-230000 109.94 30001-370000 109.94 3 than one train per day. 4 than one train per day. 9/81	00009 -10005	10.00 . 65 08		hi ahuay	lype tact lanes fac	101	•					•			
70001-9000 71.74 90001-110000 84.42 110001-180000 84.42 130001-180000 14.42 180001-230000 100.92 230001-370000 109.94 300001-370000 118.87	70001-9000 71.74 90001-110000 79.44 110001-130000 84.42 130001-130000 091.94 130001-130000 109.94 130001-300000 109.94 30001-770000 118.87 30001-770000 118.87 3 than one train per day. 4 than one train per day.	00001 - 10009	68.81		(į				,					
9001- 11000 79.44 110001- 130000 84.42 130001- 130000 91.94 180001- 230000 100.92 230001- 370000 109.94 300001- 370000 118.87	9001-11000 99.44 110001-13000 84.42 130001-130000 91.94 130001-130000 109.94 30001-300000 109.94 30001-370000 109.94 30001-370000 118.87 3 than one train per day. 4 than one train per day. 9/81	70001- 90000	46 66			•						:				
110001-130000 84.42 130001-180000 91.94 180001-230000 100.92 230001-370000 109.94 300001-370000 118.87	10001-130000 84.42 130001-180000 91.94 180001-230000 100.92 230001-300000 109.94 300001-370000 118.87 3 than one train per day. 3 than one train per day. 9/81	000011 -10006	79.61									•	•			
130001- 180000 91.94 180001- 230000 100.92 230001- 300000 109.94 300001- 370000 118.87 1 fhan one train per day.	130001- 180000 91.94 180001- 230000 100.92 230001- 300000 109.94 300001- 370000 118.87 3 than one train per day. 9/81 definition of highway type codes, see Table B-1.	110001 - 130000	84.42							,	. •					
180001- 230000 100.92 230001- 300000 109.94 300001- 370000 118.87 3 than one train per day.	180001-230000 100.92 230001-300000 109.94 300001-370000 118.87 3 than one train per day. 9/81 definition of highway type codes, see Table B-1.	130001 - 180000	91.94						•							
210001- 100000 109.94 100001- 170000 118.87 1 than one train per day.	210001- 100000 109.94 300001- 370000 118.87 3 than one train per day. definition of highway type codes, see Table B-1.	180001-230000	100.92										I			
300001- 370000 118.87 i than one train per day.	300001- 370000 118.87 i than one train per day. definition of highway type codes, see Table B-1. 9/81	230001- 300000	109.94													
s than one train per day.	s than one train per day. definition of highway type codes, see Table B-1.	300001 -10000E	118.87						•				`	:		
s than one train per day.	s than one train per day. definition of highway type codes, see Table B-1.															
	definition of highway type codes, see Table B-1.	G than one train	per day			1					· ·					

TABLE C-2 FACTOR VALUES FOR CROSSINGS WITH FLASHING LIGHT WARNING DEVICES

GENERAL. FORM OF BASIC ACCIDENT PREDICTION FORMULA: a - K & EI & MT & DT & HP & MS & HT & HL

	:				i					Maximu		Highway				
-			-	Main		IHT VED	'n	Highway		Timetal	ble	Type		HIRhuay		
×	. ×	יר" ב	-	Tracks	щ	Trains	IJ	Paved	41	Speed	MS	Codett	нт	l.anea	Til	
0.003646	8-	5 1	00	0-	1.00	0-	1.00	1 (yea)	1.00	00	1.00	01411	1.00	~	1.15	1
	9- IC	2	66.	2	1.24	2	1.12	2 (no)	1.00	10	1.00	02612	1.00		1.32	
	11- 20	۰ د	. 59	-	1.39	~	1.14			5	1.00			4	1.51	
	21- 30	4	:17	4	1.55	4	1.15			20	1.00	06614	1.00	2	1.74	
	31- 50	4 0	. 79	Ś	1.72	ŝ	1.17			25	1.00			9	1.99	
	51- 8(5	. 52	6	1.92	• و	1.18			96	1.00	07616	00.1	-	2.29	
	81- 12(9	. 27			-	1.18			2	00.1			80	2.63	
	121- 20(^	.20			30	1.19			40	1.00	08617	1.00	6	3.02	
	201- 300	8 6	1.22			6	1.20			£5	1.00					
	301- 400	6 0	.07			9	1.20			ŝ	1.00	09619	1.00			
	401- 504	6 0	11.0			11-20	1.23			55	1.00		•			
	501- 600	01 0				21-30	1.26			60	1.00					
	601- 700	0 10	.89			31-40	1.28			65	1.00					
	701-100	0 11	67.1			41-60	1.30			70	1.00					
-	1001 - 100	0 12	. 89							52	1.00					
-	301- 1600	0	.80							8	1.00					
-	601- 2000	0 14	1.11							85	1.00					
2	001- 2501	0 15	. 72							90	1.00					
2	1000 -105	0 16	. 67													
•	001- 400	0 17	16.													
1	001- 600		98 1													
r ve	001-8000		6	K a fe	urmula c	nnafant										
, a	1001 - 100		4	; ; ; ;			h distant	and other			islind bu	- 40		and the second		
		- 7 C		4 , 2 1			urgueay .	Achteres per	' á en	1111	th natrdi		11611 10	e per uay.	_	
					expusue	Tinuer I.							•	•		
2	107 - 100	77 nn	2.5		BAIN CTA	CKB TACE	10									
2(.	1001- 250	00 31	1.02	DT -	day thru	trains .	factor									
25	001- 300	00 32	2.91		highuay	paved fa	ctor									
ž	007 -1000	00 35	5.34	HS = SH	analwea	t imetabl	e speed f.	BCLOT								
74	001- 500	36 00	9.06	HT -	hlghuay	type fac	tor									-
50	001- 600	00 40	0.39	III - I	highuay	lanes fa	ctor									
90	001 - 1000	00 42	2.43		,											
70	006 -1000	29 00	5.11													
36	001 - 100	000 48	9.18													
110	001 -1000	000 50	0.85													
301	001-180	000 54	96									•				
1.BC	011- 230	000 55	. 5.6													
01.0	001 - 1000	75 000														
Ĩ	0/6 -1000	000	4.80													
			-													1
- 1686 11	311 OUG 11	ann per	04Y.													
** For del	finition	of high	Vay Ly	pe codes	. 8ee Ta	ble B-l.									9/81	

TABLE C-3 FACTOR VALUES FOR CROSSINGS WITH GATE WARNING DEVICES

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a - K x El x MT x DT x NP x MS x HT x HL

							-	Maxfm	a	Highuay	.		.
к	ין צו	Main Tracks	НТ	Day Thru Trains	DT-	Highu. Paved	ay . NP	Timetu Speed	able MS	Type Code**	. LII	Highway Lanes	н
					00				00				
0.001088 0*	00.1	-	1.00	5	81	l (ye	6) 1.0U	-	00.1	01411	00.1	~ .	1.00
	(6.2)	-	. 96 . I	-	00.1			^	00.1			7	1.1
9- 1(91.6	2	1.79	2	1.00	, 2 (no	00.1	01	1.00	02612	1.00	-	1.23
11- 20	03.86	m	2.40	.	00.1			5	1.00			4	1.36
21- 30	1 4.51	4	3.21	4	00.1			20	1.00	91990.	1.00	5	1.51
31- 50	5.22	5	4.29	.	00.1			25	00-1			9	1.68
51- 80	0.9	9	5.74	9	1.00			00	1.00	07616	1.00	7	1.86
81- 120	6.94		-	-	1.00		,	35	1.00			. 80	2.07
121- 200	8.03			8	1.00			40	00.1	08617	1.00	6	2.29
201- 300	9.23			6	1.00			45	1.00			•	
301- 400	10.25			01	00.1		-	20	00.1	61960	1.00	•	
401- 500	11.08			11-20	1.00			55	1.00				
201- 600	11.80	-		21-10	UD 1			9	00				
201 - 206	12.41			07-16	00.1			59	00-1				
				09-17			,		00				
				10-14	B			2 :			•		
1001 - 1001	1 14.84							22	1.00				
1301 1061	15.96							9 0	1.00		,		
1601-2000	17.07					,		65	1.00				
2001-2500	0 18.30		•					06	1.00				
2501- 3000	19.48					•	,						
3001-4000	0 21.00	-							. •				
4001- 6000	1 23.46			•••			•						
6001- 8000	26.06	-	ormula	onstant									
8001 - 1000	00 28.18			umber of h	d ohuav	vehtrles	oer dav.	"c", mul	tinlied by	rhe number	of train	A Der dav	
				Indev Fac	t or		1 (mm	-	fa maradan			· · · · · · · · · · · · · · · · · · ·	
15001 - 2000	14-67	L,	main tra	rka factor									
20001-2500	17. 49	T T	day thru	fraine fe	101-								
25001 - 3000	10 01		bishuau	and fact									
30001-4000	00.64 00	- SH	maximum	timetable	speed 1	factor							
1000 - 10001	00 46.53	HT -	hishuav	tvpe facto						`			
50001- 6000	00 49.53	- <u> </u>	hichuav	lanes fact	10								
60001- 7000	00 52.18	!	(0										
70001- 9000	10 55.67			,									
9000 - 1006	100 59.68												• -
10001 - 1301	100 61.16												
130001 - 1804	100 68 41												
210001- 2000													
0/F -10000F	100 86.98	_							•				
* Less than one tr	ain per day												

- LEBS FILMI DUE CLEAIN PER GAY. ** For definition of highway type codes, see Table B-1.

18/6

GLOSSARY

accident prediction formula - A hazard function which calculates predicted accidents per year at a crossing.

- active warning device A warning device activated by an approaching train; e.g., gates, flashing lights, highway signals, wig-wags, and bells.
- <u>basic accident prediction formula</u> Provides an initial prediction of a crossing's accidents based on its characteristics in the DOT Crossing Inventory. Results of the basic formula are used as input for the DOT accident prediction formula.
- benefit/cost ratio Ratio of benefit expressed in the number of accidents
 prevented per year to the cost of the warning systems (\$).
- <u>effectiveness</u> Accident reduction factor for a warning device relative to the present warning device. It is a number between zero and one; zero means no effectiveness and one is total effectiveness.
- <u>flashing lights</u> An active warning device consisting of flashing red lights that are either cantilevered or mast-mounted.
- <u>gates</u> An active warning device consisting of automatic gates and flashing lights.
- <u>hazard function</u> Any function which gives a numerical value of the likelihood of a motor vehicle/train collision at a rail-highway crossing.

<u>life-cycle costs</u> - The total net present value that is needed to procure, install, and maintain a warning device over its useful service.

optimum safety improvement - An improvement which maximizes safety benefits, in terms of reduced accidents, for a given amount of funding.

- passive warning device A warning device not activated by an approaching train.
- warning device A device which warns highway users that the roadway crosses railroad trackage.
- warning device categories The following types of warning devices are included in the three warning device categories established for the DOT resource allocation procedure:
 - passive warning devices: crossbucks, stop signs, other signs, and no signs or signals.
 - flashing light warning devices: flashing lights, both cantilevered and post-mounted; highway signals, wig-wags, or bells; and special warnings such as flagmen.
 - 3. gate warning devices: automatic gates with flashing lights.

BIBLIOGRAPHY

Farr, E.H. <u>Rail-Highway Crossing Resource Allocation Model</u>. Washington, D.C.: U.S. Department of Transportation, April 1981.

Federal Highway Administration. <u>Railroad-Highway Grade Crossing Handbook</u>. Washington, D.C.: U.S. Department of Transportation, August 1978.

Federal Railroad Administration. <u>Rail-Highway Crossing Accident/Incident</u> and Inventory Bulletin. No. 1, 1978. Washington, D.C.: U.S. Department of Transportation, October 1979.

Heisler, J. and J. Morrissey. <u>Rail-Highway Crossing Warning Device Life Cycle</u> <u>Cost Analysis</u>. Washington, D.C.: Department of Transportation, September 1980.

Mengert, Peter. <u>Rail-Highway Crossing Hazard Prediction Research Results</u>. Washington, D.C.: U.S. Department of Transportation, March 1980.

Morrissey, J. <u>The Effectiveness of Flashing Lights and Flashing Lights with</u> Gates in Reducing Accident Frequency at Public Rail-Highway Crossing. Washington, D.C.: U.S. Department of Transportation, April 1980.

